
Mass and heat transfer by natural 
convection in a vertical cavity 
A. Bejan* 

This paper reports a fundamental study of laminar natural convection in a 
rectangular enclosure with heat and mass transfer from the side, when the 
buoyancy effect is due to density variations caused by either temperature or 
concentration variations. In the first part of the study scale analysis is used to 
determine the scales of the flow, temperature and concentration fields in boundary 
layer flow for all values of Prandtl and Lewis numbers. In particular, scale analysis 
shows that in the extreme case where the flow is driven by buoyancy due to 
temperature variations, the ratio of mass transfer rate divided by heat transfer rate 
scales as Le 1/2 only if (Pr> 1, Le < 1 ) or (Pr < 1, Sc < 1 ), and as Lo 1/3 if (Pr> 1, Lo > 1 ) 
or (Pr< l ,  Sc> 1). In the second part of the study, the boundary layer scales 
derived in the first part are used to determine the heat and mass transport 
characteristics of a vertical slot filled with fluid. Criteria for the existence of distinct 
thermal and concentration boundary layers in the slot are determined. Numerical 
solutions for the flow and concentration fields in a slot without distinct thermal 
boundary layers are reported. These solutions support further the method of scale 
analysis employed in the first part of the study 
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This paper reports a fundamental study of natural 
convection in a vertical cavity filled with fluid, when the 
buoyancy effect is due to density variations caused by heat 
and mass transfer along the vertical sides of the cavity. 
Related to environmental applications involving the 
transport of water vapour and other chemical con- 
taminants across enclosed spaces, the focus of the work is 
on the boundary layer regime in which the rates of heat 
and mass transfer across the enclosure can greatly exceed 
the estimates based on the assumption of pure diffusion. 

Although the objective of this study is the boun- 
dary layer regime in the enclosures configuration, the first 
part is devoted to a detailed analysis of the scales 
describing the flow, temperature and concentration fields 
in the immediate vicinity of a single vertical wall immersed 
in a fluid reservoir with different temperature and concen- 
tration. Two decades of intensive research on enclosures 
in the presence of only heat transfer have shown that a 
theoretical understanding of the proper scales of en- 
closure flows is tied closely to the understanding of the 
scales of natural convection in isolated boundary layer 
flow 1. The same conclusion emerges in the parallel field of 
heat-transfer-driven natural convection in porous me- 
dia 2. An additional reason for sorting out the scales of a 
boundary layer first is that, currently, these scales are 
known only for flows in relatively narrow ranges of 
Prandtl and Schmidt numbers 3-v. Scaling work in the 
entire (Pr, So) domain is needed to convey an effective 
overview of the heat and mass transfer natural convection 
phenomenon. 
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The boundary layer scales thus revealed are used 
to determine criteria for the existence of the boundary 
layer regime in an enclosure, that is, criteria for the 
correctness of using the heat and mass transfer scales of 
the boundary layer in order to evaluate the transport 
capability of the enclosure. The study concludes with 
numerical experiments focusing on the intermediate re- 
gime where only one boundary layer (temperature or 
concentration) is distinct, the other transfer process being 
governed by pure diffusion. 

Boundary layer formulation 
Consider the two-dimensional flow in the immediate 
vicinity of a vertical wall (Fig 1). The wall and the 
unaffected fluid reservoir are maintained at different 
temperatures, T o and Too, while the concentration of a 
certain constituent varies from C O on the fluid side of the 
wall to Coo sufficiently far into the fluid reservoir. The 
vertical boundary layer flow is driven by the buoyancy 
effect associated with the density difference between wall 
fluid and reservoir fluid. The boundary layer momentum 
equation for this flow is: 

Ov ~v O2v g_ 
U ~x + V ~y= V ~xZ + p (Poo - P) (1) 

where u and v are the local velocity components, and 9, v, p 
and poo are the gravitational acceleration, kinematic 
viscosity, density and reservoir fluid density, respectively. 
Since the thermodynamic state of the fluid mixture 
depends on pressure, temperature and composition, in the 
limit of small density variations at constant pressure we 
can write: 

P ~P~o - p f l ( T  - Too) - p ~ c ( C  - Coo) (2) 
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where fl and tic are the thermal and concentration 
expansion coefficients: 

l ( c lp )  1 (Bp'~ 

Based on the approximation in Eq (2) the boundary layer 
momentum equation (1) becomes: 

8v 8v 02v 
U~x+V~y=Vff~x2+Ofl(T- Too)+gflc(C-Coo ) (4) 
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Fig I Thermal and concentration boundary layers near a 
vertical wall 

The flow is thus linearly coupled to the temperature and 
concentration fields obtained by solving the boundary 
layer energy and concentration equations: 

c~T t~T c32T 
u 7fx+v T~y=~ ~x z (5) 

OC 8C O2C 
u ~-x+ v fly-y= D 8x- ~-  (6) 

where T, ~, C and D are the boundary layer fluid 
temperature, thermal diffusivity, concentration (expressed 
as kilograms of constituent per unit volume) and mass 
diffusivity of constituent through the fluid mixture, re- 
spectively. The appropriate boundary conditions for the 
boundary layer-approximated equations (4)-(6) are: 

u = 0  v=0  T = T  o C = C  O a t x = 0  (7) 

v=0 T=To  C = C ~  a s x ~  (8) 

The fourth equation needed for determining uniquely the 
four unknowns of the boundary layer problem (u, v, T, C) 
is the mass conservation equation: 

c~u c~v 
cox F ~yy = 0 (9) 

The boundary layer flow is subjected to scale analysis 
below; however, in order to give structure to this analysis 
it is helpful to recognize two important extremes in which 
the phenomenon can exist. Comparison of the scales of 
the two buoyancy terms in the momentum equation 
suggests two classes of flows: 

(i) Heat-transfer-driven flows when the buoyancy effect 
due to heating from the side dominates: 

Ifl(To - T®)I >> I•(Co - Coo)l (10) 

(ii) Mass-transfer-driven flows, when the buoyancy due to 
heating from the side is negligible: 

Ifl(To - T®)I < Iflc(Co - coo)l (1 l )  

The use of absolute-value notation in Eqs (10) and (1 l) is a 
reminder that parameters fl, AT, tic and AC can be positive 

N o t a t i o n  
C 
D 
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Ra 
Ram 
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Sc 
Sh 

Concentration 
Mass diffusivity 
Gravitational acceleration 
Height of vertical wall or cavity 
Mass flux, Eq (48) 
Overall mass transfer rate, Eq (14) 
Horizontal dimension of cavity 
Lewis number, Eq (19) 
Buoyancy ratio, Eq (12) 
Overall Nusselt number, Eq (13) 
Pressure 
Prandtl number, Eq (13) 
Overall heat transfer rate, Eq (13) 
Rayleigh number, Eq (13) 
Rayleigh number, mass-transfer-driven flows, 
Eq (46) 
Local Rayleigh number, Eq (48) 
Schmidt number, Eq (28) 
Sherwood number, Eq (14) 
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Local Sherwood number, Eq (48) 
Temperature 
Horizontal velocity 
Vertical velocity 
Horizontal coordinate 
Vertical coordinate 
Thermal diffusivity 
Thermal expansion coefficient 
Concentration expansion coefficient 
Concentration boundary layer thickness 
Thermal boundary layer thickness 
Viscous shear layer thickness 
Kinematic viscosity 
Density 
Vorticity 
Streamfunction 
Wall property 
Fluid reservoir property 
Difference 
Dimensionless variables, Eq (68) 
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Table 1 S u m m a r y  of f l o w  and heat t ransfer  scales in natural  convect ion boundary layer f l o w  
driven by buoyancy due to heating f rom the side 

Prandtl 
number Thermal boundary 
range layer thickness 

Velocity profile scales 
Nusselt 

Overall thickness Distance from wall number 
Vertical velocity of wall jet to velocity peak Nu~H/6 T Fig 

Pr> 1 HRa -1/4 :t Flal/2 HRa_I/4 prl/2 HRa_I/4 Ral/4 Figs 
H 2(a)-(c) 

Pr<l  HRa_l/4pr_l/a O~ _1/2prl/2 HRa_l/4pr_l/4 HRa_l/aprl/4 Ral/4prl/4 Figs 
-~ Ra 2 (d)-(f) 

^ ^ ~. 

a 

8 c 8 r a ~r 8c ~ B T 8 a c 

d e f " ~ " - - - -  
s c a T a a, 8 c 

Fig 2 Relative size of velocity, temperature and concentration boundary layer thicknesses in heat-transfer-driven natural 
convection (Tables 1 and 2) 

or negative. The distinction between these flows can also 
be made using the 'buoyancy ratio'; 

N = tic(C° - Co) (12) 
fl(T 0 - r~o ) 

hence [N I <0(1) for class (i), and INI >0(1) for class (ii). 

H e a t - t r a n s f e r - d r i v e n  f l o w s  

The object of scale analysis is to determine the order of 
magnitude of flow velocities normal to and along the wall, 
and the order of magnitude of the four boundary layer 
thicknesses that characterize the phenomenon (two thick- 
nesses for the velocity layer, one for the thermal layer, and 
one for the concentratioh layer). This analysis begins with 
heat-transfer-driven flows because the velocity and heat 
transfer scales of such flows are known already: a 
summary of these scales is presented in Table 1, based on 
articles published by Patterson and Imberger 1, and Bejan 
and Cunnington s, using the notation: 

g/~ AT/-/3 
R a - - -  

o~v 

Pr = v/a (13) 

N u =  Q 
k A T  

Rayleigh number 

Prandtl number 

Nusselt number 

where Q is the overall heat transfer rate from the wall of 
height H, per unit length normal to the plane of Fig 1; note 
that Q ~ k H  AT/fiT, where ~r is the thermal boundary 
layer thickness scale. 

It remains to establish the concentration boundary layer 
thickness compatible with heat-transfer-driven flows, 
hence, the overall Sherwood number: 

J H 
Sh=D AC "6-~ (14) 

where 6c is the concentration boundary layer thickness, 
and J is the overall mass transfer rate from the wall of 
height H, per unit length normal to the plane of Fig 1 
(J..~DH AC/6c). As shown in Fig 2, there are six distinct 
possibilities depending on the Prandtl number and on the 
relative size of 6c and the two length scales of the heat- 
transfer-driven wall jet. 

Case (a): Pr> 1 and fc<t5 r 
In the boundary layer region of height H and thickness 6 c 
shown in Fig 2(a), the constituent conservation equation 
(6) requires: 

v D 
~-,-~ ~2c2 (15) 

Since 6c is much smaller than the thermal boundary layer 

Int. J. Heat f:t Fluid Flow 1 51 



A. Bejan 

thickness 6r. . ,HRa -1/4 (Table 1), the vertical velocity 
scale in the 5c-thick layer is only a fraction of the velocity 
scale of  the thermal boundary layer: 

~c ~ 1/2 v " ~ - - ~  (16) 

Combining Eqs (15) and (16): 

6 c "  H Le -1Is Ra -1/4 (17) 

Sh..~ Lea/3 Ra TM (18) 

where Le is the Lewis number defined as: 

Le=- -  (19) 
D 

To end case (a), note that scales (17) and (18) are valid if 
5c < 6T, ie, if: 

Le > 1 (20) 

Therefore, case (a) corresponds to fluids with both Prandtl 
and Lewis numbers of order one or greater. 

Case (b): Pr> 1 and f r < f c < f i  

When the concentration layer is thicker than the thermal 
boundary layer, the vertical velocity scale inside the 6c- 
thick layer is the same as that inside the velocity layer of 
thickness 6 ,.~ H Ra -  1/4- pr l /2  (Table 1): 

ct 
v ".~-H Ra 1/2 (21) 

Eqs (15) and (21) could be combined to determine the 6c 
scale; a more instructive alternative, however, is first to 
integrate the constituent conservation equation (6) across 
the boundary layer: 

~y v( C -  Coo) dx=  - \ ~3x /x=O 

and to recognize that this integral condition implies a 
balance between diffusive mass transfer from the side and 
vertical upflow of the constituent of interest: 

v A C min(6c, 5)~ D AC (23) 
H 6c 

A critical observation that forms the basis for distin- 
guishing between cases (b) and (c), discussed next, is that 
the scale ofx in Eq (22) is the smaller Of Sc and 6 [note that 
the vertical upflow of constituent must occupy a boun- 
dary layer region that has upward flow, 0 ~<x ~< 5, and high 
concentration of constituent, 0~<x~<5c: that region is 
0 ~<x ~<min(6c, 5)]. Therefore, using v AC6c/H as the left- 
hand side of Eq (23), and since the v-scale is known from 
Table 1, we have the means to determine the mass transfer 
scales of case (b): 

fc ~ H  Le-  1/2 Ra-  1/4 (24) 

Sh .~ Le 1/2 Ra TM (25) 

The above scales hold provided: 

57 <~ 6c <~ 6 (26) 

in other words when: 

Le < 1 < Sc (27) 

where Sc is the Schmidt number: 

Sc = Pr Le (28) 

The domain of validity of scales (24) and (25) is shown on 
the Le-Pr plane of Fig 3. 

Case (c): Pr> 1 a n d f c > 6  
When the concentration boundary layer is thicker than 
the velocity profile, we use v AC6/H on the left-hand side 
of Eq (23) and the resulting mass transfer scales are: 

5c "~ H Le-  1 Ra -  1/4 Pr -  1/2 (29) 

Sh'~ Le Ra TM Pr a/2 (30) 

The validity condition for these scales is the assumed 
inequality 6c > 6, which translates into: 

Sc< 1 (31) 

Thus the domain covered by case (c) is delineated by 
Pr > 1 and Sc < 1 in Fig 3 (note that in this domain Le is 
smaller than one). 

Case (d): Pr< 1 andfc<Sv 

In liquid metals the outer thickness of  the velocity profile 
scales as the thermal boundary layer thickness. Consider a 
concentration boundary layer much thinner than the 
viscous shear layer whose thickness (Table 1) is: 

6v ..-H Ra -  1/4 prU4 (32) 

In the concentration layer of thickness tic and height H, 
the vertical velocity scale is only a fraction of the velocity 
scale inside the thermal boundary layer: 

v'.~{~c'~(~ RaX/2 pr 1/2) (33) 
j 

therefore, the constituent conservation balance (15) 
requires 

6c ,~ H Le-  t/3 Ra -  1/4 Pr-  1/12 (34) 

Sh..~Le t/3 Ra TM Pr 1/12 (35) 
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Fig 3 The domains in which the mass transfer scales of 
heat-transfer-driven flows are valid (Table 2) 
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Writing 6c ~ &, we find that scales (34) and (35) are valid if: 

Sc > 1 (36) 

Case (e) :  Pr< 1 and  6, < 6 c < 6 r  

Considering again the balance between mass transfer 
from the side and constituent up flow, Eq (22), we conclude 
that: 

v AC AC 
H min(6o f i ) ~ D  6c (37) 

In case (e) the smaller offc  and f i  is tic; therefore, using 6c 
on the left hand side of Eq (37) and v~(ot/H)Ra 1/2 Pr 1/2 
(Table 1) yields: 

6c "~ H L e -  1/2 R a -  1/4 P r -  1/4 (38) 

Sh ,~ Lel/2 Raa/4Pr TM (39) 

As validity conditions for the above scales we write 
6~ <6c < fir, and the result is: 

Sc < 1 < Le (40) 

The domain defined by these conditions is shown labeled 
(e) in Fig 3. 

Case ( f ) :  Pr< 1 and  f c > 6 r  

Finally, in the case of small Lewis numbers the concen- 
tration layer may extend beyond the thermal boundary 
layer (Fig 2(0). Therefore, starting with v A C f i / H  on the 
left-hand side of Eq (37) leads to the following mass 
transfer scales: 

6 c ..~H L e -  1 R a -  1/4 P r -  1/4 (41) 

Table 2 Summary of mass transfer scales in 
natural convection boundary layer f low driven 
by buoyancy due to heating from the side 

C o n -  

figuration Sherwood number 
(Fig 2) S h ~ H / ~ c  

Domain of validity 
(Fig 3) 

Pr Le Sc 

(a) Lel/3Ra TM > 1 > 1 > 1 

(b) Lel/2Ra TM >1 <1 >1 
(c) LeRal/4pr 1/2 > 1 < 1 < 1 

(d) Lel/3Ral/4pr 1/12 < 1 > 1 > 1 

(e) Le 1/2Ra 1/4Prl/4 < 1 > 1 < 1 

(f) LeRal /4pr  TM < 1 < 1 < 1 

Mass and heat transfer by natural convection in a cavity 

Sh,,, Le Ra TM Pr TM (42) 

As validity condition we have the assumption 6c > f i ,  
which means: 

Le < 1 (43) 

The square subdomain labeled (f) on Fig 3 completes the 
scale analysis of mass transfer to heat-transfer-driven 
natural convection boundary layer flow. The mass trans- 
fer scales revealed by this analysis are summarized in 
Table 2 with their respected domains of validity. Noting 
that from case (a) to case (f), all the Sherwood number 
scales are different: the existence of six Sh scales for heat- 
transfer-driven flows, alone stresses the need for having 
undertaken the scale analysis of the phenomenon, without 
restrictions on the size of the Pr and Sc domains. 

Mass- t rans fe r -d r iven  f l o w s  

This section considers the second class of boundary layer 
flows (identified as (ii) earlier), wall-jet flows driven by 
buoyancy associated mainly with the variation of concen- 
tration. The scales of the flow, temperature and concen- 
tration fields may be derived by repeating step-by-step the 
scale analysis used above. However it is sufficient to note 
that the scale analysis of mass-transfer-driven flows can be 
written by simply subjecting the analysis above to the 
transformation 

fl AT ~ & AC 

¢~D (44) 

~T ~ C  
Related to the dimensionless groups that influence the 
flow and transfer scales of the phenomenon, this trans- 
formation means: 

Pr ~ Sc 

Ra ~ Ram (45) 

Le ~ Le -1 

Nu ~ Sh 

where Ram is the 'mass-transfer' Rayleigh number ob- 
tained by subjecting Ra to transformation (44): 

gflc ACHa 
Ram - = Ra Le N (46) 

vD 

The value of this observation is that the scales of mass- 
transfer-driven flows can now be deduced by combining 
Tables 1 and 2 with the dimensionless transformation (45). 
The resulting scales are summarized in Tables 3 and 4. It is 

Table 3 Summary of f low and mass transfer scales in natural convection boundary layer f low 
driven by mass transfer from the side 

Velocity profile scales 
Schmidt Concentration Sherwood 
number boundary layer Overall thickness Distance from wall number 
range thickness Verticial velocity of wall jet to velocity peak Sh~H/6c 

Sc > 1 HRa m 1/4 D Rail 2 H Ram 1/4 Sc 1/2 H Ram 1/4 Ra~4 

Sc < 1 H Ram 1/4Sc - 1/4 H'D ~;),¢zm~l/2~..1~,./2 H Ram I/4Sc - 1/4 H Ram 1/4Scl/4 Ralm/4Scl/4 
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Table 4 Summary  of heat t ransfer  scales in 
natural convect ion boundary layer f l o w  driven 
by buoyancy due to mass transfer  f rom the 
side 

Domain of validity 
(Fig 4) 

Con- Nusselt number, 
figuration N u ~ H / ~ T  Pr Le Sc 

(g) L e - 1 / 3 R a ~  4 >1 <1 >1 

Le Ram > 1 > 1 > 1 (h) -1/2 1/4 

(i) Le- lRa~4Sc  1/2 < 1 > 1 > 1 

Le Ram Sc >1 <1 <1 (j) -1/3 1/4 1/12 

(k) Le-1/2Ralrn/4Scl/4 < 1 < 1 < 1 

(I) Le- lRa l /4Sc  TM < 1 > 1 < 1 
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Fig 4 The domains in which the heat transfer scales of 
mass-transfer-driven flows are valid (Table 4) 

worth considering the symmetry of Tables 1 and 3 and 
Tables 2 and 4, and noting that in mass-transfer-driven 
flows the Schmidt number plays the role played by the 
Prandtl mumber for heat-transfer-driven flows. Note also 
that in either class of flows, (i) or (ii), there are only two 
scaling patterns (possibilities) for the flow and the transfer 
process that drives the flow. In either class, there are six 
different scaling patterns for the transfer process that does 
not contribute to the buoyancy effect driving the flow. In 
flows of class (ii), the six possible ways of estimating the 
heat transfer scale are presented as cases (g)--(1) in Table 4 
and Fig 4. 

Discuss ion  o f  sca l ing  resu l ts  

The complexity of combined heat and mass transfer in 
vertical boundary layer natural convection is amply 
illustrated by the numerous scales organized in Tables 1-4. 
The Nusselt number, for example, is always proportional 
to Ra 1/4 (Tables 1 and 4); however, the coefficient in this 
proportionality can have eight different expressions 
depending on N, Pr and Le (or Sc). The same is true for the 
Sherwood number scales summarized in Tables 2 and 3. 

Obviously, comparisons of the results of scale analysis 
with published analytical and experimental results must 
be approached with caution. 

The literature contains a number of studies of the 
combined boundary layer problem of Fig 1. However, 
these studies are not conclusive with respect to how the 
mass transfer rate varies vis-h-vis the heat transfer rate, ie 
on how the ratio Sh/Ra depends on Le. The main reason 
for this state of affairs is that, with one exception 7, the 
existing studies address a limited range of Prandtl num- 
bers and Schmidt numbers. For example, the first integral 
analysis of the phenomenon 3 is valid only for Pr and Sc 
values of order 0(1). Nevertheless, Somers' analysis 3 
indicates that Sh/Ra must scale as Le 1/2 when the flow is 
dominated by the buoyancy effect due to heating from the 
side. This conclusion is in qualitative (average) agreement 
with the Le dependence recommended by the results 
listed as (a)-(t) in Table 2 (since Pr, Sc and Le are all of 
order one, Somers' analysis cannot be compared with a 
specific case in Table 2). The Lewis number scaling 
envisioned by Somers is supported by subsequent studies 
reported by Mathers et al 4, Wilcox 5 and deLeeuw Den 
Bouter et al 6. 

The scaling conclusions above can be tested par- 
tially using Gebhart and Pera's study 7 in which similarity 
solutions are reported for a wide range of Schmidt 
numbers, 0.1-500, for both air (Pr--0.7) and water 
(Pr = 7). At first glance, the difficulty with using Gebhart 
and Pera's data is that all the flows documented by them 
fall between class (i)IN] ~ 1, and class (ii), IN] >> 1; in other 
words, all these flows are the result of 'combined' buoy- 
ancy effects, either aiding or opposing each other. Indeed, 
Gebhart and Pera chose to set N equal to - 0.5, 0.5, 1 or 2, 
in order to document the intermediate range o f transition 
from opposing to aiding buoyancy effects. 

Gebhart and Pera's data are in fact quite useful in 
the present study, because they are numerous enough so 
that the data for N = 0  (heat-transfer-driven flow limit) 
can be deduced with a reasonable degree of accuracy by 
graphic interpolation. The results of this graphic work are 
listed in Table 5, where C'(0) is G-ebhart and Pera's 
notation for dimensionless concentration gradient at the 
wall. In the present notation, C'(0) is proportional to the 
numerical coefficient in the expected proportionality 

Table 5 Mass transfer  results for heat- 
t ransfer-dr iven f lows ( N = 0 ) ,  deduced via 
graphic interpolat ion f rom the similari ty 
solutions of Gebhart  and Pera 7 

Pr Sc Le - C' (O) ShyRa~ 1/4 

7 1 0.143 ~0.4 0.172 
7 1 1.05411 0.458 

100 14.3 ~2.95 1.282 
500 71.4 ~ 5.125 2.228 

0.7 0.1 0.143 ~0.182 0.141 
0.5 0.714 ~0.412 0.318 
0.7 1 0.4995 0.386 
0.94 1.343 ~0.579 0.448 
5 7.14 ~1.19 0.920 

10 14.3 ~1.55 1.20 
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F iff 5 The effect of Lewis number on mass transfer in heat- 
transfer-driven natural convection boundary layer flow 

Shy ~R4 /4  

Shy = - 2-1/2C'(0) Pr- 1/4 gayl/4 (47) 

Shy and Ray are the local Sherwood and Rayleigh 
numbers: 

j" y gflATy a 
Shy = AC D Ray = (48) 0iv 

wherej" is the local mass flux through the vertical wall. In 
Table 5, the values determined graphically for C'(0) are 
preceded by ',~' if the interpolation was based on three 
points, by ' ~ '  if based on four points, and by no sign if the 
value was reported numerically by Gebhart and Pera 7. 

Fig. 5 shows the N = 0 data of  Table 5 plotted as 
Shy Ray-1/4 versus Le; the data spans the Lewis number 
range 0.1-100, while the Prandfl number is either 0.7 or 7. 
Fig 5 is thus an ideal test for the results listed as (a) and (b) 
in Table 2, regarding the Prandtl numbers 0.7 and 7 as of 
order unity or greater. The data show convincingly that at 
small Lewis numbers the scaling law is Shy ,~,Le 1/2 Ra~/4, 
in agreement with result (b) of  Table 2 (note that the two 
left most points on each curve in Fig 5 are united by a 
straight line drawn intentionally with a slope of  1/2). At 
large Lewis numbers, the scaling law changes visibly to 
Shy ": Lel/3Ra~y/'¢, as the two right most points fall on a line 
of  slope 1/3. This last feature validates result (a) of Table 2. 
And, the transition from one scaling law to the other takes 
place in the vicinity of  Le=0(1), which is in agreement 
with the transition between subdomains (a) and (b) in 
Fig 3. 

The test illustrated in Fig 5 shows also the 
negligible effect of Prandtl number on the Shy~Ra~/4 
proportionality: this finding is correctly anticipated by 
scaling laws (a) and (b) of  Table 2. Finally, considering the 
symmetry or conceptual analogy between Tables 2 and 4, 
it follows that the test presented in Fig 5 validates also the 
theoretical results (g) and (h) listed in Table 4. 

No single test is capable of  validating all the heat 
and mass transfer scales revealed by the analysis of 
sections 3 and 4. Tables 2 and 4 are an invitation to 
additional testing, an invitation answered later in this 
paper in the context of boundary layer flow on the two 
vertical walls of  a slot filled with fluid. 

Note also that the scales of  Table 1 and its mass 
transfer analogue (Table 3) need no additional testing: 

Mass and heat transfer by natural convection in a cavity 

the scales of vertical boundary layer natural convection 
are amply documented in the fluid mechanics literature 
(see, for example, Patterson and Imbergerl). 

The boundary layer regime in a vertical 
slot 
The reward for having determined first the scales of  the 
boundary layer flow of Fig l, is that now the same scales 
can be used to estimate the rates of  heat and mass transfer 
across a fluid space of finite width L (Fig 6). Motivated by 
engineering application related to the migration of a 
chemical species across a double-wall space filled with 
fluid, we focus on convection in tall rectangular en- 
closures, L/H<~ 1. The problem that remains is to de- 
termine under what conditions thermal and concen- 
tration boundary layers are distinct in the vertical slot, 
that is, under what conditions the scales of Tables 1-4 are 
valid. 

In their discussion of  the scales of pure heat 
transfer in a rectangular enclosure, Patterson and Imber- 
ger I showed that the heat transfer scales of Table 1 apply 
to an enclosure heated and cooled from the side if the 
thermal boundary layer thickness 5T is small compared 
with the horizontal dimension L' 

5T < L (49) 

in other words if." 

L 
Ral/4> 1 (Pr> 1) (50) 

L 
Ra 1/4 Pr 1/4 > 1 (Pr < 1) (51) 

These criteria for the existence of distinct vertical boun- 

T=O 
C=O 

Adiabatic and Impermeable 

"T % 

lg 

- I  

T=AT 

C =AC 

- - - - -  8 T 

= 8 c 

O0 L 
g 

Fiff 6 Rectanoular enclosure with mass and heat transfer 
from the side 
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dary layers are confirmed by numerical and laboratory 
experiments (eg, Patterson and Imberger 1, Yewell et al9). 

Based on the same reasoning, the criterion for 
distinct concentration boundary layers in the vertical slot 
of Fig 6 is: 

6c < L (52) 

which means that the mass transfer scales of Table 3 are 
valid for an enclosure if." 

L 
-H Rail*> 1 (Sc > 1) (53) 

L 1'4 1'4 -~Ram / Sc / > 1 (Sc< 1) (54) 

Criteria (49) and (52) can also be applied to the 'secondary' 
scales assembled in Tables 2 and 3 (these scales may be 
called secondary because in each case they belong to the 
transfer process that is insignificant with respect to 
driving the flow). Thus the mass transfer rate in heat- 
transfer-driven convection is described by the Sherwood 
numbers listed in Table 2 if the following conditions hold: 

(a) L Lel/3 Ral/4> 1 
H 

L 1 '2 1 '4 (b) ~ L e  / Ra / >1 

L 
(c) ~ LeRal/4pra/2> 1 (55) 

(d) L Lel/3 Rail 4 prl/12 > 1 

(e) L/.,el/2 Rall4 prll4 > 1 
H 

L 1 ' 4  (0 ~ Le Ra / P r " >  1 

Conversely, for mass-transfer-driven flows in vertical 
enclosures the heat transfer scales of Table 4 are valid if: 

L (g) ~ Le- 1/3 Ra~/4 > 1 

L L e -  1/2 RaXm/4 > 1 (h) 

L Le-1 Rail4 Scl/2> 1 (56) (i) ~- 

L 113 Rail4 S c l / 1 2  O) ~ L e -  >1 

L Le-  1/2 Rail,, Scl/4 > 1 (k) 

L Le-' Ra~/4Scl/4> 1 

If the distinct boundary layer criteria (50), (51), (53)-(56) 
fail, that is if the calculated 6T, 6o scales are larger than L, 
then the actual transfer of heat or chemical species across 
the layer of thickness L is by diffusion. In such eases the 
Nusselt and Sherwood numbers for the vertical enclosure 

scale as: 

N u = k Q  kH AT/L H (57) 
AT k AT L 

J DH AC/L H 
Sh = D A C "  D AC L (58) 

Tables 1-4 in association with the distinct boundary layer 
criteria reported here give a birds-eye-view of the com- 
bined heat and mass transfer phenomenon in a vertical 
slot filled with fluid, in the two extremes in which the 
buoyancy effect is dominated either by heat transfer or by 
mass transfer from the side. Relative to the multitude of 
transfer scales discovered in a single boundary layer (Fig 
1), the heat and mass transfer scales of a vertical slot are 
even more numerous, due to the existence of diffusion- 
dominated regimes (Eqs (57) and (58)) and due to the 
possibility of flows with only one distinct boundary layer. 
This last possibility is not covered by any of the heat and 
mass transfer scales developed so far, and, for this reason, 
it forms the subject of the series of numerical experiments 
described next. 

Numerical solutions for enclosures with 
only one distinct boundary layer 
The series of numerical experiments reported here aims 
to illustrate further the effect of Lewis number on the mass 
transfer rate in a heat-transfer-driven flow (or on the heat 
transfer rate in a mass-transfer-driven flow). It is impor- 
tant to recognize from the start that there is more than one 
way in which to conduct a numerical test for the effect of 
Lewis number. One could start with the complete Navier- 
Stokes equations and vary appropriately the five 
dimensionless groups of the problem (Ra, N, Pr, Le, L/H) 
to illustrate the effect of the parameter of interest. 
However, this approach would be inefficient in this case 
because the scaling laws to be tested belong to limiting 
(extreme) situations in which the phenomenon is governed 
by equations much simpler than the Navier-Stokes 
equations, and the numerical results of a five-parameter 
problem are unable to illustrate clearly the effect of a 
single parameter, since each of the five parameters (whose 
values have to be finite) contributes its own share to the 
final numerical result. 

A more efficient alternative is to isolate from the 
very start the phenomenon of interest, in this case, the 
mass transfer through a vertical slot in which the flow is 
driven by heat transfer alone. This decision amounts to 
setting N = 0  in the complete momentum equation. 
Furthermore, since mass transfer is the phenomenon of 
interest and since this phenomenon does not contribute in 
any way to driving the flow, it makes sense to fix the 
temperature field and the flow field driven by it. By far the 
simplest choice, one that is found regularly in slender 
double-pane window spaces, is the diffusion temperature 
field 

T = ~ -  x (59) 

and the corresponding flow field obtained by solving the 
flow problem: 

AT 
0 = - -  l~V2o)  Jr- g f l  - -  (60) 

L 
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Fig 7 (a) Velocity and (b) concentration profiles in the 
horizontal plane situated at mid-heioht 

O2=V2¢ (61) 

u = 8@/8y (62) v = - 8~,/8x 

@=0 and ~--~=0 at x=O,L (63) 

@=0 and ~-~-=0 at y=O,H (64) 

The momentum equation (60) contains the additional 
assumption that the Prandtl number is much larger than 
unity, as the inertia terms have been assumed negligible 
(this assumption holds even for moderate Prandtl num- 
bers if the slot becomes tall enough, L/H ~ 0). 

In terms of the distinct boundary layer criteria 
presented above the flow chosen for numerical study is 
one without distinct thermal boundary layers: 

L 
-~ Ra 1/4 < 1 (65) 

Mass and heat transfer by natural convection in a cavity 

where (L/H)Ra 1/4 is finite and fixed. Since the Prandtl 
number is greater than one, the velocity boundary layers 
are not distinct also (in other words, there is no stratified 
core in the enclosure1°). The vertical velocity profile is S- 
shaped (Fig 7) and depends only weakly on the geometric 
aspect ratio L/H, provided the ratio L/H is small (in fact, 
the velocity profiles for L/H = 0.5 and 0.25 are practically 
the same as the profile for L/H=O which is available in 
analytical form 11.12). 

The mass transfer phenomenon and its own tran- 
sition from the diffusion regime to the concentration 
boundary layer regime were determined numerically 
using the temperature and flow fields represented by Eqs 
(59)--(64). The concentration field C(x, y) was calculated 
by solving: 

8¢, 8c 8¢, 8c 
DV2C (66) 

8y 8x 8x 8y 

C=0  at x = 0  

C=AC at x = L  (67) 

OC 
- - = 0  at y=O,H 8y 

in which the flow field ~b(x, y) is known. For numerical 
computation, the problems stated above were made 
dimensionless by introducing: 

(~, ~)= (x, y)/L 

O2 

g# ATL/v 

gfl A TL3/v (68) 

C = C/AC 

In this notation, equations (60), (61) and (66) become: 

9203 (L)2  82o3 
8x z +  ~ ~ = 1  (69) 

a2¢ fLV 

rLvs:e  rtwsC, se 8¢,8e3 
9; 2 +t-H) -ffff=LeRat-H ) tz~ -} ~ 92 9)] (71) 

showing that the flow field depends on L/H alone, and 
that the concentration field depends on L/H and 
LeRa(L/H) 4. The dimensionless form of the boundary 
conditions (63), (64) and (67) is not listed, for the sake of 
brevity. 

Eqs (69)-(71) were approximated via the standard 
centred finite difference method and solved iteratively on 
the computer. The method was identical to one used 
earlier in the study of natural convection in a vertical 
porous layer saturated with fluid13: note that Eqs 
(67)-(71) are of the same type as in Darcy flow natural 
convection. Grid fineness tests documented in the earlier 
study and repeated here showed that the uniform grid size 
Ax = Ay = L/20 is fine enough to yield overall Sherwood 
number results within one percent of the asymptotic 
value. Thus, the results reported in Table 6 were obtained 
using a mesh with 21 x 21 lines for L/H= 1, 21 x 41 for 
L/H=0.5, and 21 x 81 for L/H=0.25. The boundary 
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T a b l e  6 N u m e r i c a l  r e s u l t s  f o r  m a s s  t r a n s f e r  
v ia  h e a t - t r a n s f e r - d r i v e n  n a t u r a l  c o n v e c t i o n  in 
a v e r t i c a l  s l o t  ( N = 0 ,  Pr>>l, (L/H)Ral/4~I). 

L 
L/H Le Ra -~ Sh ~m.x 

1 103 1.134 1.26 x 10 -3 
1.5 x 103 1.272 

2 × 103 1.426 
2.5 x 103 1.580 

3 × 103 1.723 
3.5 x 103 1.855 

4 x 103 1.973 
4.5 x 103 2.080 

5x103 2.178 
5.5 x 103 2.267 

6 x 103 2.350 
6.5 x 103 2,427 

7 x 103 2.500 
8 x 103 2.635 

104 2.875 
1.6 x 104 3.495 

2 x 104 3.800 

0 .5  5 x 1 0  3 1.054 2.60x 10 -3 
104 1.191 

2 × 104 1.543 
4 x 104 2.122 
8 × 104 2 . 7 8 6  

0.25 2x104  1.0035 2.61 x l O  -3 
4 x 1 04 1.01 36 
8 x 1 04 1.048 

1.6x105 1.142 
3.2 x 105 1.338 
6.4 x 10 ~ 1.71 4 

conditions for vorticity and zero mass flux along the top 
and bottom walls were based on three-node approxi- 
mations. Likewise, the local mass flux along the vertical 
walls was calculated using a three-node approximation 
for the concentration gradient normal to the wall. Table 6 
shows the resulting value of the overall Sherwood number 
defined by Eq (14): it is worth noting that the group 
ShL/H is the diffusion-referenced Sherwood number 
whose value is one in the regime delineated by criterion 
(58). 

Fig 8 shows the overall Sherwood number calcu- 
lations as ShL/H versus L/H and the combined group 
le Ra(L/H) 4. Firstly, this figure shows that the aspect ratio 
L/H has only a minor effect if the vertical slot is slender, as 
suggested already by the non-dimensionalized equations 
(67)-(71). The same figure also validates the method of 
scale analysis on which results (a) and (b) of Table 2 and (g) 
and (h) of Table 3 are based. To see this, it is necessary to 
keep in mind that the mass transfer regime documented 
by the experiments of Fig 8 does not conform to the 
boundary layer regimes represented by cases (a), (b), (g) 
and (h), because in the present case the flow is one without 
distinct velocity boundary layers (wall jets). As shown in 
Fig 7, the vertical velocity profile is a counterflow in which 
the transversal scale of each stream is of order L and, from 
Eq (68), the peak vertical velocity scale is of order: 

gfl A T L  2 
v,-~ (72) 

y 

The scale analysis presented earlier for cases (a) and (b) 

can be repeated using Eq (72) as peak vertical velocity 
scale instead of the boundary layer velocity scale listed in 
Table 1 for Pr > 1. And, as shown by the concentration 
boundary layer profiles of Fig 7, we have two cases to 
consider: 

Case (a'): 6c<L 
In this case the vertical velocity in the 6c-thick layer is of 
order (tic/L)v, with the v scale given by Eq (72). Repeating 
the analysis between Eqs (15) and (18) we obtain: 

L F /L'X4-] 1/3 
~ S h ~ [ L e R o ~ )  J (73) 

Case (b'): 6c~L 
When the concentration boundary layer penetrates 
through the vertical stream, the vertical velocity scale in 
the 6c-thick layer is the same as in Eq (72); omitting the 
algebra, the equivalent of the analysis contained between 
Eqs (21) and (25) yields: 

L [- //L'~4q 1/2 
Sh~LLegat  } J (74) 

Scaling results (73) and (74) indicate that on a graph such 
as Fig 8 the diffusion referenced Sherwood number should 
pass through three different regimes: 

I. At very low values of the abscissa parameter, when 
the concentration layer is not distinct, Sh L/H should 
be asymptotically equal to one. 

II. At intermediate values of LeRa(L/H) 4, ie when 
6c ~L, the diffusion-referenced Sherwood number 
should increase as the square root of the abscissa 
parameter, Eq (74). 

III. At high values of LeRa(L/H) 4, when tic is much 
smaller than L, the slope of the Sh L/H curve on Fig 8 
must be 1/3 (Eq (73)). 

These three features are confirmed without ambiguity by 
the overall Sherwood number data of Table 6 and Fig 8. 
The agreement between the theoretical features I-III, and 
numerical experiments confirms that the method of scale 
analysis employed above is correct and, more specifically, 
that in the transition from regime (a) to (b) the Sherwood 
number dependence on Lewis number shifts from Le 1/3 to 
Le I/z. This last statement reinforces the test constructed 
in Fig 5, especially since prior to this study the existence of 
a Le~/a-dependence for Sherwood number was not re- 
cognized in the natural convection mass transfer 
literature. 

I0 

0 L / H =  I 

a L / H  = 0.5 
o L / H  = 0.25 

& 

I , , ~ J , , T ' ~ -  , i . . . . . .  ~ , 
~s ~4 

Le Ra ( L / H )  4 

Fig 8 Numerical )'esultsfor overall mass transfer through 
a vertical cavity (N--- O, Pr > 1, (L/H) Ra TM < 1) 
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Engineering Flow and Heat 
Exchange 
O. Levenspiel 

This book is designed to be used in a course following on 
from one that introduces the principles of heat, mass and 
momentum transfer and not much more. 

The first half of the book is entitled 'Flows of fluids 
and mixtures'. In eight chapters, this covers basic fluid 
mechanics for flows that are Newtonian and non- 
Newtonian, compressible and incompressible, and the 
specialized topics of terminal velocities, low pressure 
systems as well as flows through packed and fluidized 
beds. The second half, 'Heat Exchange', takes the student 
through basic heat transfer plus through-the-wall and 
direct heat exchangers as well as energy storage devices. 
Radiation heat transfer is given only a brief introduction. 

In the author's preface, he states that the book will 
be of interest tO practising engineers or technologists who 
want a broad picture of the subject or who need help in 
getting started on the solution to a problem. In this 
respect I think the book serves its purpose. One can see 
how someone who is a technologist or engineer in a field 
other than chemical or mechanical engineering could fmd 
the book quite useful. Such users may well want to go 

further with a problem than is possible by using this book. 
Here, the references are adequate support for the material 
discussed. To be of much use as a book for non-experts, 
however, a bibliography of newer, specialized books on 
heat exchangers, fluidized beds and the like would be most 
useful. 

The second suggested application of the book, as 
alluded to in the first paragraph above, is as a follow-on 
text. Here it could not be used after typical texts on 
transport phenomena as there would be far too much 
overlap in most areas. It would best fit in as a service 
course for other than chemical or mechanical engineers or 
technologists. For instance, I can see it following 
Engineering Thermodynamics by Reynolds and Perkins or 
Introduction to Thermal Sciences by Schmidt et al, 
although the second is probably already too 
comprehensive. 

Subject to the above restrictions, the book is well 
written and the examples as well as the problems after 
each chapter are interesting and instructive. 
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University of Kentucky, 

Lexington, KY, 
USA 
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